Επίσης, μεταλλοτεχνία αποκαλείται και ο κλάδος της επιστήμης της μεταλλογνωσίας που έχει ως αντικείμενο τη μελέτη της συμπεριφοράς μεταλλικών υλικών όταν σ' αυτά ασκούνται διάφορες δυνάμεις.
Η μεταλλοτεχνία ως τέχνη (αγγλ., metalworking) έχει μεγάλη ιστορία και συνδέεται με την ιστορία του ανθρώπινου γένους.
Αντιθέτως, η μεταλλοτεχνία ως επιστήμη (αγγλ., Mechanical Metallurgy) διαμορφώθηκε κατά το β΄ μισό του 20ού αι., με τη συστηματική μελέτη της μηχανικής συμπεριφοράς των μετάλλων σε μακροσκοπικό και μικροσκοπικό επίπεδο.
Σίδηρος
Το χημικό στοιχείο Σίδηρος (αγγλ. iron, λατ. ferrum) είναι μέταλλο της 1ης κύριας σειράς των στοιχείων μετάπτωσης με ατομικό αριθμό 26 και ατομικό βάρος 55,847.
Έχει θερμοκρασία τήξης 1535 °C και θερμοκρασία βρασμού 2750 °C.
Είναι το πιο άφθονο χημικό στοιχείο κατά μάζα του πλανήτη Γη και το τέταρτο πιο άφθονο στοιχείο στον στερεό φλοιό της, μετά το Οξυγόνο (Ο), το Πυρίτιο (Si) και το Αργίλιο (Al) .
Ακόμη, ο σίδηρος είναι πολύ συνηθισμένος στους πετρώδεις πλανήτες, νάνους πλανήτες, δορυφόρους και αστεροειδείς του ηλιακού συστήματος κι αυτό χάρη στην αφθονη παραγωγή τους ως τελικό προϊόν πυρηνικής σύντηξης σε άστρα υψηλής μάζας.
Για την ακρίβεια παράγεται το ισότοπο 56Ni του νικελίου, που είναι το τελευταίο νουκλίδιο για το οποίο η πυρηνική σύντηξη είναι εξώθερμη.
Αυτό σημαίνει ότι αυτό το ραδιενεργό νουκλίδιο (56Ni) είναι το τελευταίο που παράγεται πριν καταρρεύσει ένας υπερκαινοφανής αστέρας (supernova), οπότε η έκρηξή του διαχύσει το περιεχόμενο του άστρου.
Το ραδιενεργό 56Ni διασπάται στη συνέχεια στο σταθερό 56Fe, με αποτέλεσμα το τελευταίο να επικρατεί τελικά απόλυτα σε αναλογία παρουσίας.
Όπως και τα υπόλοιπα χημικά στοιχεία της ομάδας 8 (VIII σύμφωνα με την παλαιότερη ομαδοποίηση), ο σίδηρος βρίσκεται σε σχετικά μεγάλο εύρος αριθμών οξείδωσης από -2 ως και +6, αν και οι αριθμοί οξείδωσης +2 και +3 είναι οι συνηθισμένες του.
Στοιχειακός σίδηρος βρίσκεται σε μετεωρίτες και άλλα χαμηλής συγκέντρωσης οξυγόνου και υγρασίας περιβάλλοντα.
Είναι πολύ ευαίσθητο στην παρουσία οξυγόνου και νερού.
Επιφάνειες νεοσχηματισμένου στοιχειακού σιδήρου φαίνονται ασημόγκριζα, αλλά οξειδώνονται στον κανονικό ατμοσφαιρικό αέρα, δίνοντας οξείδια του σιδήρου, γνωστά ως «σκουριά».
Αντίθετα από πολλά άλλα μέταλλα, που σχηαματίζουν μόνο ένα προστατευτικό στρώμα οξειδίου, το οξείδιο του σιδήρου καταλαμβάνει μεγαλύτερο όγκο σε σύγκριση με το κομμάτι μεταλλικού (δηλαδή στοιχειακού) σιδήρου από το οποίο προήλθε.
Έτσι, κατά διαστήματα «σκάει», εκτίθοντας νέες επιφάνειες μεταλλικού σιδήρου για διάβρωση.
Ο σίδηρος ήταν γνωστός από την προϊστορική εποχή, συγκεκριμένα από την Εποχή του Σιδήρου.
Όμως, επειδή κάποια κράματα χαλκού τήκονται σε χαμηλώτερη θερμοκρασία, ήταν τα πρώτα μέταλλα που χρησιμοποιήθηκαν στην ανθρώπινη ιστορία.
Ο καθαρός μεταλλικός σίδηρος είναι μαλακός, μαλακότερος και από το αλουμίνιο, αλλά είναι αδύνατο να εξσχθεί κατά τη διεργασία της ερυθροπύρωσης.
Το υλικό σκληραίνει σημαντικά κατά διάρκεια της διεργασίας, απορροφώντας διάφορες προσμίξεις, όπως ο άνθρακας.
Με συγκέντρωση άνθρακα μεταξύ 0,2% και 2,1% παράγεται χάλυβας (steel ή «ατσάλι» εκ του λατινικού acciaio), που μπορεί να είναι μέχρι και 1.000 φορές σκληρότερος από τον καθαρό μεταλλικό σίδηρο.
Ο «ακατέργαστος σίδηρος» (crude iron) παράγεται σε υψικαμίνους, όπου σιδηρομετάλλευμα, συνήθως αιματίτης (Fe2O3) ανάγεται από κωκ (C και παραγώμενο CO) σε «επεξεργασμένο σίδηρο» (pig iron), που συμπεριέχει σχετικά μεγάλη συγκέντρωση άνθρακα.
Με παραπέρα «εξευγενισμό» (refinement) με οξυγόνο ανάγεται το ανθρακούχο περιεχόμενο, ελαττώνοντας τη συγκέντρωση του άνθρακα στο κράμα στις προδιαγραφές του χάλυβα.
Χάλυβες και διάφορα κράματα σιδήρου με σχετικά μικρή περιεκτικότητα σε άνθρακα που περιέχουν και κάποια άλλα μέταλλα ή και στοιχεία («κράματα χάλυβα» alloy steels) χρησιμοποιούνται πλέον πολύ ευρύτερα στη σύγχρονη βιομηχανική χρήση, εξαιτίας του μεγάλου εύρους επιθυμητών ιδιοτήτων, αλλά και της σχετικής αφθονίας του σιδήρου, που έχει να κάνει με το σχετικά χαμηλό κόστος παραγωγής.
Οι χημικές ενώσεις του σιδήρου, που περιλαμβάνουν τις «σιδηρο-» (ενώσεις του FeII) και τις «σιδηρη-» (ενώσεις του FeIII) (κυρίως) ενώσεις, έχουν επίσης πολλές εφαρμογές.
Μίγμα (σκόνης) οξειδίου του σιδήρου (FeO) και σκόνης αλουμινίου μπορεί να αναφλεγεί, δημιουργώντας τη γνωστή αντίδραση θερμίτη, που χρησιμοποιείται στη συγκόλληση και στον καθαρισμό μεταλλευμάτων. Δημιουργεί δυαδικές ενώσεις με τα αλογόνα και τα χαλκογόνα.
Ανάμεσα στις οργανομεταλλικές ενώσεις του σιδήρου είναι η φερροκίνη, η πρώτη ένωση σάντουϊτς που ανακαλύφθηκε.
Ο σίδηρος παίζει σημαντικό ρόλο στη βιοχημεία, σχηματίζοντας σύμπλοκα με το μοριακό οξυγόνο (O2) στην αιμογλοβίνη και στη μυογλοβίνη, δυο συνηθισμένες μεταφορικές πρωτεΐνες οξυγόνου, που το μεταφέρουν στα σπονδυλωτά.
Ο σίδηρος είν αι ακόμη το μέταλλο που βρίσκεται στο ενεργό κέντρο πολλών σημαντικών οξειδοαναγωγικών ενζύμων που ασχολούνται με την κυτταρική αναπνοή και την οξειδοαναγωγή πολλών βιοχημικών ενώσεων σε φυτά και ζώα.
Χαρακτηριστικά
Ο καθαρός σίδηρος είναι ένα μέταλλο αλλά βρίσκεται σπάνια με αυτήν την μορφή στην επιφάνεια της γης, επειδή οξειδώνεται εύκολα με την παρουσία οξυγόνου και υγρασίας στην ατμόσφαιρα.
Προκειμένου να παραλάβουμε μεταλλικό σίδηρο, το οξυγόνο πρέπει να απομακρυνθεί από τα φυσικά μεταλλεύματα – κυρίως από τον αιματίτη (μετάλλευμα σιδήρου με τύπο Fe2O3) σε υψηλές θερμοκρασίες.
Οι ιδιότητες του σιδήρου μπορούν να τροποποιηθούν με την ανάμιξη του με τα διάφορα άλλα μέταλλα (και μερικά αμέταλλα, κυρίως άνθρακα και πυρίτιο) για να σχηματίσει ατσάλι.
Οι πυρήνες των ατόμων σιδήρου έχουν μερικές από τις υψηλότερες συνδετικές ενέργειες ανά πυρήνα, οι οποίες ξεπερνώνται μόνο από το ισότοπο νικελίου 62Ni. Παγκοσμίως το αφθονότερο των πιο σταθερών ισοτόπων είναι, παρόλα αυτά, το 56Fe.
Αυτό σχηματίζεται από την πυρηνική σύντηξη στα αστέρια.
Αν και ένα περαιτέρω μικρό ενεργειακό κέρδος θα μπορούσε να εξαχθεί από τη σύνθεση 62Ni, οι συνθήκες στα αστέρια είναι ακατάλληλες ώστε να ευνοηθεί αυτή η διαδικασία.
Η διανομή των στοιχείων στη γη ευνοεί πολύ περισσότερο το σίδηρο παρά το νικέλιο, καθώς επίσης και πιθανώς στα στοιχεία-προϊόντα ενός υπερκαινοφανούς άστρου.
Ο σίδηρος (ως Fe2+, κατιόν σιδήρου (ΙΙ)) είναι ένα απαραίτητο ιχνοστοιχείο που χρησιμοποιείται από σχεδόν όλους τους ζωντανούς οργανισμούς.
Οι μόνες εξαιρέσεις είναι μερικοί οργανισμοί που ζουν σε περιβάλλον φτωχό σε σίδηρο και έχουν εξελιχθεί ώστε να χρησιμοποιούν διαφορετικά στοιχεία στις μεταβολικές τους διαδικασίες, όπως μαγγάνιο αντί για σίδηρο για την κατάλυση, ή την αιμοκυανίνη αντί για την αιμογλοβίνη.
Ένζυμα που περιέχουν σίδηρο συμμετέχουν στην κατάλυση οξειδωτικών αντιδράσεων στη βιοχημεία, και στις μεταφορές διάφορων ευδιάλυτων αερίων.
Προέλευση
Ο σίδηρος είναι το έκτο αφθονότερο στοιχείο στο σύμπαν, που διαμορφώνεται ως τελική πράξη της νουκλεοσύνθεσης, από το πυρίτιο που συντήκεται στα ογκώδη αστέρια.
Ενώ αποτελεί περίπου το 5% της επιφάνειας της γης, ο γήινος πυρήνας θεωρείται ότι αποτελείται κατά ένα μεγάλο μέρος από ένα κράμα σιδήρου-νικελίου που αποτελεί το 35% της συνολικής μάζας της γης.
Ο σίδηρος είναι συνεπώς το αφθονότερο στοιχείο στη Γη, αλλά μόνο το τέταρτο αφθονότερο στοιχείο στην επιφάνειά της, μετά το αργίλιο (Al).
Το μεγαλύτερο μέρος του σιδήρου στην επιφάνεια βρίσκεται ενωμένο με το οξυγόνο ως οξειδια σιδήρου όπως ο αιματίτης, ο γκετίτης και ο μαγνητίτης ή θειούχα (σιδηροπυρίτης).
Περίπου ένας στους 20 μετεωρίτες αποτελείται από μεταλλεύματα σιδήρου-νικελίου.
Αν και σπάνιοι, οι μετεωρίτες σιδήρου είναι ο σημαντικότερος τρόπος σχηματισμού και αίτιο ύπαρξης μεταλλικού σιδήρου στην επιφάνεια της γης.
Το κόκκινο χρώμα της επιφάνειας του Άρη θεωρείται ότι προέρχεται από πετρώματα πλούσια σε σίδηρο.
Αλουμίνιο
Το αλουμίνιο (Aluminium)ή αργίλιο είναι το χημικό στοιχείο με σύμβολο Al και ατομικό αριθμό 13.
Είναι ένα αργυρόλευκο μέταλλο στοιχείο που ανήκει στην ομάδα IIIA (13) του περιοδικού συστήματος μαζί με το βόριο.
Είναι το πιο άφθονο μέταλλο στο φλοιό της Γης και συνολικά το τρίτο (3ο) πιο άφθονο χημικό στοιχείο συνολικά στον πλανήτη μας, μετά το οξυγόνο και το πυρίτιο.
Κατά βάρος αποτελεί περίπου το 8% του στερεού φλοιού.
Ωστόσο είναι πολύ δραστικό χημικά ώστε να βρίσκεται στη φύση ως ελεύθερο μέταλλο.
Αντίθετα, βρίσκεται ενωμένο σε πάνω από 270 διαφορετικά ορυκτά.
Η κύρια πηγή για τη βιομηχανική παραγωγή του μετάλλου είναι ο βωξίτης.
Το μεταλλικό αλουμίνιο έχει (φαινομενικά) μεγάλη ικανότητα στο να αντιστέκεται στη διάβρωση. Αυτό στην ουσία συμβαίνει γιατί με την έκθεση του μετάλλου στην ατμόσφαιρα σχηματίζει στιγμιαία ένα λεπτό επιφανειακό, μη ορατό, στρώμα οξειδίου του, που εμποδίζει τη βαθύτερη διάβρωσή του (φαινόμενο της παθητικοποίησης).
Επίσης, εξαιτίας της σχετικά χαμηλής του πυκνότητας και της μεγάλης του ικανότητας να δημιουργεί μεγάλη ποικιλία κραμάτων, έγινε στρατηγικό μέταλλο για την αεροδιαστημική (και όχι μόνο) βιομηχανία.
Είναι, επίσης, εξαιρετικά χρήσιμο στη χημική βιομηχανία, τόσο αυτούσιο ως καταλύτης, όσο και με τη μορφή διαφόρων ενώσεών του.
Ιστορία
Το άγαλμα του Αντέρωτα ως Αγγέλου της Χριστιανικής Χάρης (που συχνά συγχέεται με τον αρχαίο θεό και γιο της Αφροδίτης Έρωτα) στην Piccadilly Circus στο Λονδίνο, κατασκευάσθηκε το 1893 κσι ήταν ένα από τα πρώτα αγάλματα που κατασκευάσθηκαν από αλουμίνιο.
Οι αρχαίοι Έλληνες και Ρωμαίοι γνώριζαν τη στυπτηρία (διπλό θειικό άλας αργιλίου και καλίου) και την χρησιμοποιούσαν.
Επίσης, χρησιμοποιούσαν αργιλοπυριτικές ενώσεις στην κεραμική.
Το 1761 ο Γκιτόν ντε Μορβό (Guyton de Morveau) πρότεινε το όνομα «αλουμίνα» για το οξείδιο του αργιλίου (Al2O3). Τ
ο αργίλιο ανακαλύφθηκε, ως στοιχείο, το 1808 από τον Σερ Χάμφρεϊ Ντέιβι, ο οποίος και του έδωσε το όνομα, αρχικά «αλούμιο» και αργότερα «αλουμίνιο», αφού το στοιχείο προερχόταν από το οξείδιό του, την αλουμίνα. Το 1825 ο Δανός επιστήμονας Χανς Κρίστιαν Έρστεντ (Hans Christian Orsted) απομόνωσε πρώτη φορά το αργίλιο, όταν κατεργάστηκε άνυδρο χλωριούχο αργίλιο με αμάλγαμα καλίου.
Το 1827 περιγράφηκε αναλυτικά από τον Βέλερ (Woehler) μία μέθοδος παρασκευής του αργιλίου σε σκόνη από άνυδρο χλωριούχο αργίλιο και κάλιο.
O Βέλερ γενικά πιστώνεται την απομόνωση του αργιλίου, αλλά επίσης και ο Έρστεντ πρέπει επίσης ν' αναφερθεί ως αυτός που το ανακάλυψε.
Επίπλέον ο Pierre Berthier ανακάλυψς ότι περιέχεται αλουμίνιο στο βωξίτη και κατόρθωσε επιτυχημένα την εξόρυξη του μετάλλου από το ορυκτό.
To 1854 ο Ανρί Σεν-Κλερ Ντεβίλ (Henri St-Claire Deville), βασισμένος στις εργασίες του Βέλερ επινοεί την πρώτη εμπορική μέθοδο παραγωγής του.
Αρχικά, το κόστος του αργιλίου ήταν υψηλότερο από αυτό του χρυσού και του λευκόχρυσου.
Γι' αυτό το λόγο σε γεύματα του Ναπολέοντος Γ' της Γαλλίας, οι πιο σημαντικοί καλεσμένοι έτρωγαν σε πιάτα από αργίλιο!
Το 1886 ήρθε η μεγάλη επανάσταση στην παραγωγή αλουμινίου, οπότε εφευρέθηκε η μέθοδος Hall-Heroult. Σε αυτή τη μέθοδο, τήγμα μίγματος κρυολίθου (φθοριούχο άλας του νατρίου και του αργιλίου: Na3AlF6) αργιλίου και οξειδίου το αργιλίου (αλουμίνα: Al2O3) ηλεκτρολύεται με συνεχές ρεύμα.
Το τηγμένο αργίλιο συγκεντρώνεται στο βυθό του ηλεκτρολυτικού λουτρού. Όλο το αλουμίνιο που παράγεται στον κόσμο παράγεται με αυτή τη μέθοδο.
Το 1889 ο Bayer επινόησε μία μέθοδο καθαρισμού του βωξίτη προς παρασκευή αλουμίνας, με τη χρήση καυστικού νατρίου.
Έτσι, άνοιξε ο δρόμος για την παραγωγή μεγάλων ποσοτήτων αλουμινίου. Το 1900 η παγκόσμια παραγωγή αλουμινίου ήταν 8000 τόνοι. Έκτοτε αυξήθηκε με πολύ μεγάλους ρυθμούς, για να φτάσει το 1999 τα 24 εκατομμύρια τόνους.
Ιδιότητες
Οι ιδιότητες που κάνουν το αλουμίνιο τόσο σημαντικό για την βιομηχανία είναι το χαμηλό του ειδικό βάρος, η υψηλή αντοχή του σε μηχανικές καταπονήσεις και η εξαιρετική αντοχή του στη διάβρωση, η οποία οφείλεται στο φαινόμενο της παθητικοποίησης.
Το καθαρό αλουμίνιο είναι αρκετά μαλακό και όλκιμο.
Με την προσθήκη σιδήρου, χαλκού και άλλων κραματικών στοιχείων βελτιώνονται κατά πολύ οι μηχανικές του ιδιότητες.
Το αλουμίνιο υφίσταται εύκολα κατεργασία με χύτευση και με αφαίρεση υλικού.
Παρουσιάζει, επίσης, πολύ καλή θερμική και ηλεκτρική αγωγιμότητα.
Χρήσεις
Τα κράματα αλουμινίου με 2,5-6,3% κ.β. χαλκό ονομάζονται ντουραλουμίνια.
Περιέχουν συνήθως ως πρόσθετα κραματικά στοιχεία μαγνήσιο και σπανιότερα, μαγγάνιο και πυρίτιο.
Παρουσιάζουν εξαιρετικές μηχανικές ιδιότητες, οι οποίες οφείλονται στη σκλήρυνσή τους με δημιουργία κατακρημνισμάτων και χρησιμοποιούνται ευρύτατα στην αεροναυπηγική, λόγω του χαμηλού τους βάρους και της εξαιρετικής τους αντοχής.
Τα τελευταία χρόνια, χρησιμοποιούνται στην αεροναυπηγική και σε άλλες εφαρμογές όπου το χαμηλό βάρος και οι καλές μηχανικές ιδιότητες σε χαμηλές θερμοκρασίες είναι ζητούμενα κράματα αλουμινίου-λιθίου.
Άλλα κράματα αλουμινίου χρησιμοποιούνται στην αυτοκινητοβιομηχανία, τη βιομηχανία αθλητικών ειδών και τη ναυπηγική.
Χρησιμοποιείται επίσης για την κατασκευή των κουτιών για ποτά, του αλουμινόχαρτου και άλλων υλικών και εργαλείων της κουζίνας.
Το οξείδιο του αργιλίου, η αλουμίνα, βρίσκεται στη φύση με τη μορφή του ρουμπινιού, του ζαφειριού και του κορουνδίου.
To κορούνδιο έχει σκληρότητα στην κλίμακα Mohs ίση με 9, πράγμα που το κάνει ένα από τα σκληρότερα υλικά στη φύση.
Γι' αυτό το λόγο χρησιμοποιείται ως λειαντικό η συνθετική αλουμίνα.
Τα οξείδια του αργιλίου χρησιμοποιούνται επίσης στην υαλουργία και την κατασκευή λέιζερ.
Κρύσταλλοι ρουμπινιού χρησιμοποιούνται επίσης ως αισθητήρες πίεσης για υψηλές πιέσεις.
Γραμμές μεταφοράς ηλεκτρικής ενέργειας κατασκευάζονται επίσης συχνά από αλουμίνιο, καθώς έχει μικρότερο βάρος και κόστος από το χαλκό (αν και όχι τόσο καλή ηλεκτρική αγωγιμότητα).
Οι στυπτηρίες, κρυσταλλικές ενώσεις (άλατα) του αργιλίου με το γενικό χημικό τύπο K2SO4·Al2(SO4)3·24H2O χρησιμοποιούνται ως στυπτικά καθώς και στη βαφική.
Παραγωγή
Το διάγραμμα φάσεων κρυολίθου–αλουμίνας παρουσιάζει ένα ευτηκτικό σημείο για 10,5% κ.β. Al2O3 με σημείο τήξης 960 °C, γεγονός που επιτρέπει την παραγωγή αλουμινίου από τήγμα των δύο ενώσεων.
Σήμερα, η παραγωγή αλουμινίου ακολουθεί σε γενικές γραμμές την ακόλουθη διαδικασία:
Πρώτα ο βωξίτης εξορύσσεται από το κοίτασμα (συνήθως επιφανειακό).
Στη συνέχεια εκπλύνεται, θρυμματίζεται και διαλύεται σε πυκνό διάλυμα καυστικού νατρίου σε υψηλή θερμοκρασία και πίεση.
Με αυτό τον τρόπο, οι προσμίξεις του βωξίτη (κυρίως οξείδια του σιδήρου και του πυριτίου) απομακρύνονται και παραμένει στο διάλυμα το καυστικό νάτριο με το οξείδιο του αργιλίου.
Στη συνέχεια απομακρύνεται και το καυστικό νάτριο και παραμένει μόνο το ένυδρο οξείδιο του αργιλίου, το οποίο πυρώνεται στους 1100° C έτσι, ώστε να απομακρυνθεί το νερό.
Ακολουθεί η ηλεκτρόλυση.
Το οξείδιο του αργιλίου διαλύεται σε τήγμα κρυολίθου, το οποίο βρίσκεται σε ηλεκτρολυτική λεκάνη με άνοδο ηλεκτρόδιο άνθρακα και κάθοδο την επένδυση της λεκάνης από ανθεκτικό μέταλλο.
Στη συνέχεια διαβιβάζεται μέσα από αυτό συνεχές ηλεκτρικό ρεύμα χαμηλής τάσης αλλά εξαιρετικά υψηλής έντασης (περίπου 150000 Αμπέρ).
Το τηγμένο αλουμίνιο συλλέγεται από το βυθό της λεκάνης.
Το παραγόμενο κατά την ηλεκτρόλυση οξυγόνο κατευθύνεται προς την άνοδο από άνθρακα, τον οποίο καίει, (γι' αυτό και τα ηλεκτρόδια της ανόδου αντικαθίστανται τακτικά) διατηρώντας έτσι την θερμοκρασία του τήγματος σε υψηλά επίπεδα.
Παράλληλα, όμως, παράγεται και φθόριο (προερχόμενο από τον κρυόλιθο), το οποίο συλλέγεται με ειδικό κάλυμμα της λεκάνης και, κατευθυνόμενο σε ειδική μονάδα ανακυκλώνεται, ώστε να μην καταλήξει στην ατμόσφαιρα.
Η ηλεκτρόλυση είναι μια διεργασία η οποία είναι εξαιρετικά ηλεκτροβόρα.
Ένα τυπικό εργοστάσιο παραγωγής αλουμινίου καταναλώνει ρεύμα όσο μια μικρή πόλη.
Ενδεχόμενη διακοπή ρεύματος για παραπάνω από 4 ώρες σημαίνει στερεοποίηση των τηγμάτων στις λεκάνες και, συνεπώς, καταστροφή τους.
Γι' αυτό το λόγο, τα περισσότερα εργοστάσια είτε παράγουν επιτόπου την ηλεκτρική ενέργεια που καταναλώνουν είτε συνδέονται με παραπάνω από μία πηγές ενέργειας (έχουν δηλαδή απευθείας διεθνείς συνδέσεις).
Εκτός από το βωξίτη, το αργίλιο βρίσκεται στη φύση στα ορυκτά της αργίλου και στους κρυστάλλους του ρουμπινιού, του ζαφειριού και του κορουνδίου αλλά και σε πολύ μεγάλο αριθμό πυριτικών, κυρίως, ορυκτών. Μεγάλος αριθμός βιομηχανικών ορυκτών περιέχει αργίλιο.
ΙΝΟΧ
Ο ανοξείδωτος χάλυβας ( inox )είναι κράμα σιδήρου–άνθρακα–χρωμίου με ελάχιστη περιεκτικότητα σε χρώμιο 10,5% κ.β.
Το χρώμιο δημιουργεί ένα μικροσκοπικό στρώμα (10–100 nm) τριοξειδίου του χρωμίου (Cr2O3), το οποίο προστατεύει το μεταλλικό υπόστρωμα από την οξείδωση και την διάβρωση.
Εκτός από χρώμιο, οι ανοξείδωτοι χάλυβες μπορεί να περιέχουν και άλλα κραματικά στοιχεία, όπως νικέλιο, μολυβδαίνιο, μαγγάνιο, κ.λπ.
Οι ανοξείδωτοι χάλυβες παράγονται σε ηλεκτρικές καμίνους με ανάτηξη παλαιοσιδήρου (σκραπ), σιδηροκραμάτων (π.χ. σιδηροχρώμιο, σιδηρονικέλιο, κ.λπ.) και άλλων μεταλλικών προσθηκών. Χρησιμοποιούνται ευρέως σε πολλές εφαρμογές που απαιτούν αντοχή στην διάβρωση για λόγους οικονομικούς (π.χ. χημική βιομηχανία), για λόγους αισθητικούς (π.χ. αρχιτεκτονική) ή για λόγους υγιεινής (π.χ. μαγειρικά σκεύη).
Σε σύγκριση με τους κοινούς χάλυβες, οι ανοξείδωτοι χάλυβες, εκτός από την πολύ υψηλότερη αντοχή στην διάβρωση, παρουσιάζουν επιπλέον και υψηλότερη μηχανική αντοχή.
Ωστόσο, είναι πιο σκληροί από τους κοινούς χάλυβες και γι' αυτό πιο δυσκατέργαστοι.
Οι ανοξείδωτοι χάλυβες παρουσιάζουν επίσης χαμηλή θερμική αγωγιμότητα σε σύγκριση με τους κοινούς χάλυβες.
Ιστορία
Ο πρώτος που ανακάλυψε ότι το χρώμιο προσδίδει στον χάλυβα αντοχή στην διάβρωση ήταν ο Γάλλος Πιέρ Μπερτιέ (Pierre Berthier) το έτος 1821.
Αλλά εκείνη την εποχή, οι χάλυβες είχαν υψηλή περιεκτικότητα σε άνθρακα με αποτέλεσμα ο ανοξείδωτος χάλυβας να είναι πολύ εύθραυστος.
Το 1872, οι βρετανοί Γουντς (Woods) και Κλαρκ (Clark) έλαβαν δίπλωμα ευρισιτεχνίας για κράμα σιδήρου με 30–35% χρώμιο και 1,5–2% βολφράμιο, που παρουσιάζει υψηλή αντοχή στην διάβρωση από οξέα.
Ωστόσο, η δυσκολία παραγωγής χάλυβα με χαμηλή περιεκτικότητα σε άνθρακα (< 0,15%) παρέμενε εμπόδιο στην ανάπτυξη των ανοξείδωτων χαλύβων.
Το εμπόδιο αυτό ξεπεράστηκε το 1893, όταν ο Γερμανός Χανς Γκόλντσμιτ (Hans Goldschmidt) επινόησε την αλουμινοθερμική αποξείδωση του χάλυβα.
Η ανακάλυψη του Γκόλντσμιτ επέτρεψε στις χαλυβουργίες να παράγουν στους μεταλλάκτες τους χάλυβα με υψηλή περιεκτικότητα σε οξυγόνο και πολύ χαμηλή περιεκτικότητα σε άνθρακα, και κατόπιν να αποξειδώνουν τον τηγμένο χάλυβα με την προσθήκη μεταλλικού αλουμινίου.
Στις αρχές του 20ού αι., Γάλλοι, Βρετανοί, Γερμανοί και Αμερικανοί ερευνητές παρασκεύασαν και μελέτησαν πολλά κράματα Fe-Cr-Ni που αντιστοιχούν στις σημερινές ποιότητες AISI-SAE 300 και AISI-SAE 400.
Από το 1909, η γερμανική εταιρεία Krupp AG άρχισε να κατασκευάζει πλοία χρησιμοποιώντας χάλυβες που περιείχαν χρώμιο και νικέλιο.
Το 1913, ο Βρετανός μεταλλουργός Χάρρυ Μπρέαρλυ επινόησε στο Σέφηλντ της Αγγλίας τους μαρτενσιτικούς ανοξείδωτους χάλυβες και πρότεινε τη χρήση τους για την παραγωγή μαγειρικών σκευών.
Ο Μπρέαρλυ ονόμασε τους νέους χάλυβες «rustless», δηλ. «ασκούριαστους». Λίγο καιρό μετά, τους έδωσε το όνομα «stainless», δηλ. «ακηλίδωτους» ή «άσπιλους».
Γι' αυτόν τον λόγο, ο Μπρέαρλυ θεωρείται ο εφευρέτης του ανοξείδωτου χάλυβα.
Ο διάδοχος του Μπρέαρλυ στο εργαστήριο Μπράουν-Φερθ (Brown-Firth), ο Γουίλλιαμ Χάτφηλντ (αγγλ., W. H. Hatfield) παρασκεύασε το 1924 τον ωστενιτικό ανοξείδωτο χάλυβα 18/8 (18% Cr, 8% Ni), που έκτοτε παραμένει ο πιο αντιπροσωπευτικός και ο πιο διαδεδομένος ανοξείδωτος χάλυβας.
Παραγωγή
Ο ανοξείδωτος χάλυβας παράγεται σε κάμινο (κλίβανο) ηλεκτρικού τόξου παρόμοιο μ' αυτόν που χρησιμοποιείται για την παραγωγή κοινού χάλυβα από παλαιοσίδηρο και σπογγώδη σίδηρο.
Στην περίπτωση του ανοξείδωτου χάλυβα, οι πρώτες ύλες είναι παλαιοσίδηρος και σιδηροκράματα, όπως σιδηροχρώμιο και σιδηρονικέλιο.
Η αναλογία των πρώτων υλών εξαρτάται από την επιθυμητή τελική ποιότητα του ανοξείδωτου χάλυβα, αλλά, σε γενικές γραμμές, περίπου το 60% του φορτίου της καμίνου είναι ανακυκλωμένος παλαιοσίδηρος — κυρίως ανοξείδωτος, αλλά και κοινός.
Το υγρό μέταλλο από την ηλεκτρική κάμινο μεταφέρεται σε μεταλλάκτη AOD («Argon Oxygen Decarbonization») για την απομάκρυνση του περιεχόμενου άνθρακα με εμφύσηση οξυγόνου και αργού.
Κατά την απανθράκωση, το αέριο μίγμα που εμφυσάται γίνεται όλο και πιο πλούσιο σε αργό, και έτσι η περιεκτικότητα του υγρού μετάλλου μειώνεται από 1,5% σε ποσοστό έως και 0,015% κ.β.
Η απανθράκωση του τήγματος μπορεί να γίνει και σε μεταλλάκτη VOD («Vacuum Oxygen Decarbonization») με εμφύσηση οξυγόνου υπό συνθήκες κενού.
Μετά τον μεταλλάκτη AOD/VOD, το υγρό μέταλλο καθαρίζεται υπό κενό για να απομακρυνθούν τα υπολειπόμενα αέρια.
Κατόπιν χύνεται σε καλούπια για να παραχθούν πλινθώματα («χελώνες»), ή χύνεται κατά συνεχή τρόπο σε δοκούς («μπιγιέτες»), ή χύνεται σε πλάκες («σλαμπ») υπό πίεση.
Η έλαση των πλινθωμάτων και των δοκών γίνεται εν θερμώ ή εν ψυχρώ, όπως συμβαίνει και στην περίπτωση του κοινού χάλυβα, για την παραγωγή πλατέων και επιμήκων προϊόντων.
Τα φύλλα ανοξείδωτου χάλυβα συνήθως υποβάλλονται σε θερμική κατεργασία («ανόπτηση») για να γίνουν πιο μαλακά, και σε καθαρισμό μέσα σε λουτρό οξέος για να καθαριστούν και να δημιουργηθεί πιο γρήγορα το λεπτό στρώμα Cr2O3 που προστατεύει τον χάλυβα από την διάβρωση.
Η παγκόσμια παραγωγή ανοξείδωτου χάλυβα το 2006 ήταν 28 εκατ. τόνοι και αναμένεται να ξεπεράσει τους 30 εκατ. τόνους το 2010.
Ποιότητες και εφαρμογές
Η προσθήκη νικελίου αυξάνει την σταθερότητα του ωστενίτη.
Οι ανοξείδωτοι χάλυβες διακρίνονται με βάση την κύρια φάση στην κρυσταλλική δομή τους.
Ωστενιτικοί ανοξείδωτοι χάλυβες
Πρόκειται για ανοξείδωτους χάλυβες με κύρια φάση τον ωστενίτη (γ-Fe).
Περιέχουν πολύ λίγο άνθρακα (συνήθως < 0,08% C, αλλά μερικοί περιέχουν έως 0,15% C) και τουλάχιστον 16% Cr.
Ο ωστενίτης σταθεροποιείται με την προσθήκη Ni ή και Mn, και παραμένει η σταθερή φάση σε όλο το θερμοκρασιακό εύρος από το σημείο τήξης του κράματος έως πολύ κάτω από το 0 °C.
Επειδή ο ωστενίτης δεν είναι μαγνητικός (δεν είναι «φερρομαγνητικός»), οι ωστενιτικοί ανοξείδωτοι δεν είναι μαγνητικοί.
Οι ωστενιτικοί ανοξείδωτοι χάλυβες δεν επιδέχονται θερμική κατεργασία.
Οι πιο κοινοί ανοξείδωτοι χάλυβες είναι ο 18/8 (18% Cr, 8% Ni) και ο 18/10 (18% Cr, 10% Ni), που ανήκουν στην σειρά 300, σύμφωνα με τα αμερικανικά πρότυπα AISI-SAE. Στους ανοξείδωτους χάλυβες AISI-SAE 304 (ISO A2), όσο πιο υψηλή είναι η περιεκτικότητα σε νικέλιο, τόσο μεγαλύτερη είναι η αντοχή σε διάβρωση.
Οι ανοξείδωτοι χάλυβες AISI-SAE 316 (ISO A4) παρουσιάζουν ακόμα πιο υψηλή αντοχή στην διάβρωση, επειδή και μολυβδαίνιο σε περιεκτικότητα μέχρι 2%.
Οι ανοξείδωτοι χάλυβες AISI-SAE 304L και AISI-SAE 316L περιέχουν πολύ λίγο άνθρακα (< 0,03%), για να συγκολλούνται πιο εύκολα.
Εκτός από τους κοινούς ωστενιτικούς χάλυβες, υπάρχουν και οι λιγότερο ανθεκτικοί μαγγανιούχοι ωστενιτικοί ανοξείδωτοι χάλυβες της σειρά ANSI 200, οι οποίοι περιέχουν Cr και Mn, καθώς και Ni σε σχετικά μικρή περιεκτικότητα.
Υπάρχουν επίσης και οι υπερωστενιτικοί ανοξείδωτοι χάλυβες με πολύ υψηλή περιεκτικότητα σε Ni (> 20%) και Mo (> 6%), για υψηλή αντοχή στην διάβρωση από οξέα, χλώριο και χλωριούχα διαλύματα.
Ο χάλυβας AISI-SAE 904L (UNS N08904) είναι υπερωστενιτικός ανοξείδωτος (19–23% Cr, 23–28% Ni, 4–5% Mo) και περιέχει 1–2% χαλκό για υψηλή αντοχή σε όξινα αναγωγικά περιβάλλοντα, όπως για παράδειγμα το θειικό οξύ.
Φερριτικοί και μαρτενσιτικοί ανοξείδωτοι χάλυβες
Η κατάταξη ακατέργαστων ανοξείδωτων χαλύβων κατά Schäffler.
Στον άξονα των x δίνονται τα κραματικά στοιχεία που ευνοούν τον σχηματισμό φερρίτη ως ισοδύναμο Cr (= (%Cr) + 1,5(%Si) + (%Mo) + 0,5(%Nb)) και στον άξονα των y δίνονται τα κραματικά στοιχεία που ευνοούν τον σχηματισμό ωστενίτη ως ισοδύναμο Ni (= (%Ni) + 0,5(%Mn) + 30(%C)).
Πρόκειται για ανοξείδωτους χάλυβες με κύρια φάση τον φερρίτη (α-Fe) ή τον μαρτενσίτη (μετασταθής φάση που προκύπτει με απότομη ψύξη του ωστενίτη).
Περιέχουν 10,5–27% χρώμιο, αλλά ελάχιστο ή καθόλου νικέλιο (< 2%).
Περιέχουν ωστόσο μολυβδαίνιο ή και τιτάνιο.
Οι φερριτικοί ανοξείδωτοι χάλυβες μετασχηματίζονται σε μαρτενσιτικούς με κατάλληλη θερμική κατεργασία («βαφή» με απότομη ψύξη).
Οι μαρτενσιτικοί ανοξείδωτοι χάλυβες είναι πιο μαλακοί σε σύγκριση με τους αντίστοιχους ωστενιτικούς, και συνεπώς είναι πιο κατάλληλοι για μηχανουργικές κατεργασίες.
Επίσης, οι μαρτενσιτικοί ανοξείδωτοι χάλυβες μπορούν να υποστούν σκλήρυνση με κατακρήμνιση.
Ένας τυπικός μαρτενσιτικός ανοξείδωτος χάλυβας περιέχει 12–14% Cr, 0,2–1% Mo, < 2.5% Ni και 0,1–1,2% C.
Οι φερριτικοί και οι μαρτενσιτικοί ανοξείδωτοι χάλυβες ανήκουν στην σειρά AISI-SAE 400, αλλά οι μαρτενσιτικοί ανοξείδωτοι χάλυβες που έχουν υποστεί σκλήρυνση με κατακρήμνιση ανήκουν στην σειρά AISI-SAE 600.
Ο πλέον γνωστός ανοξείδωτος χάλυβας που έχει υποστεί σκλήρυνση με κατακρήμνιση είναι ο χάλυβας 17/4PH (AISI-SAE 630), που περιέχει 15–17,5% Cr και 3–5% Ni.
Διφασικοί ανοξείδωτοι χάλυβες
Οι διφασικοί ή ωστενοφερριτικοί ανοξείδωτοι χάλυβες ή ανοξείδωτοι χάλυβες διπλής φάσης (duplex) περιέχουν ωστενίτη και φερρίτη σε αναλογία που κυμαίνεται από 50:50 έως 40:60.
Συνήθως περιέχουν 19–28% Cr, < 5% Mo και λίγο Ni.
Παρουσιάζουν εξίσου καλή αντοχή στην διάβρωση με τους ωστενιτικούς ανοξείδωτους χάλυβες, αλλά είναι πιο μαλακοί.
Ο πιο κοινός ανοξείδωτος χάλυβας διπλής φάσης είναι ο AISI-SAE 2205 (UNS S31803/S32205).
Διάβρωση
Ακόμα και οι ανοξείδωτοι χάλυβες παθαίνουν διάβρωση. Μόνον που στην περίπτωση των ανοξείδωτων χαλύβων, η διάβρωση μπορεί να μην δημιουργεί την εμφανή σκουριά που παρατηρείται στην επιφάνεια των κοινών χαλύβων.
Οπότε τα αποτελέσματα της διάβρωσης των ανοξείδωτων χαλύβων μπορεί να είναι ξαφνικά και με καταστρεπτικές συνέπειες.
Η διάβρωση των ανοξείδωτων χαλύβων συμβαίνει κατά πολλούς τρόπους.
Μικροδιάβρωση
Η μικροδιάβρωση ή διάβρωση με βελονισμό ή τρηματική διάβρωση (αγγλ., pitting) συμβαίνει όταν ο ανοξείδωτος χάλυβας εκτίθεται σε περιβάλλον από το οποίο λείπει το οξυγόνο ή σε περιβάλλον όπου άλλα ιόντα ανταγωνίζονται το οξυγόνο ως οξειδωτικό μέσο.
Έτσι, π.χ. όταν ένας ανοξείδωτος χάλυβας εκτίθεται σε χλωριούχα διαλύματα, το προστατευτικό στρώμα του Cr2O3 καταστρέφεται από τα ανιόντα Cl– με αποτέλεσμα να δημιουργούνται μικροσκοπικές εσοχές στην επιφάνεια του χάλυβα.
Οι εσοχές μπορεί να εξελιχθούν σε ρωγμές που, υπό κάποια σχετικά χαμηλή καταπόνηση, αναπτύσσονται με μεγάλη ταχύτητα με καταστρεπτικά αποτελέσματα.
Μικροδιάβρωση παρατηρείται συχνά και σε κοιλότητες ή συγκολλήσεις εξαρτημάτων από ανοξείδωτο χάλυβα.
Σ' αυτή την περίπτωση γίνεται λόγος για διάβρωση κοιλοτήτων, σπηλαιώδη διάβρωση ή διάβρωση διαχωριστικών επιφανειών (αγγλ., crevice corrosion).
Η διάβρωση κοιλοτήτων μπορεί να είναι έντονη ακόμα και σε σχετικά χαμηλή θερμοκρασία.
Περικρυσταλλική διάβρωση
Η περικρυσταλλική διάβρωση (αγγλ., intergranular corrosion) συμβαίνει όταν ο ανοξείδωτος χάλυβας θερμανθεί και σχηματιστούν καρβίδια του χρωμίου ((Fe,Cr)7C3, κ.ά.ό.) γύρω από τους κρυστάλλους του κράματος.
Τα καρβίδια αυτά αντικαθιστούν το οξείδιο του χρωμίου και έτσι ο χάλυβας χάνει την προστασία του.
Η περικρυσταλλική διάβρωση εξαρτάται από την περιεκτικότητα του κράματος σε άνθρακα.
Ανοξείδωτοι χάλυβες με 0,06% C παθαίνουν περικρυσταλλική διάβρωση μέσα σε 2 λεπτά στους 700 °C· αντιθέτως, ανοξείδωτοι χάλυβες με 0,02% C δεν παθαίνουν περικρυσταλλική διάβρωση.
Περιρυσταλλική διάβρωση παρατηρείται και μετά την συγκόλληση ανοξείδωτων χαλύβων εξαιτίας τοπικής υπερθέρμανσης του κράματος.
Η περικρυσταλλική διάβρωση μπορεί να αναστραφεί με θέρμανση του κράματος στους 1000 °C, διαλυτοποίηση των καρβιδίων του χρωμίου και απότομη ψύξη («βαφή»). Ανοξείδωτοι χάλυβες που περιέχουν τιτάνιο, νιόβιο ή ταντάλιο παρουσιάζουν υψηλή αντοχή στην περικρυσταλλική διάβρωση.
Διάβρωση με μηχανική καταπόνηση
Η διάβρωση με μηχανική καταπόνηση ή δυναμοδιάβρωση ή εργοδιάβρωση (αγγλ., stress corrosion cracking) είναι ένα πολύπλοκο φαινόμενο που παρατηρείται όταν ο ανοξείδωτος χάλυβας βρίσκεται υπό μηχανική καταπόνηση σε διαβρωτικό περιβάλλον, όπως, π.χ. εντός χλωριούχων διαλυμάτων.
Χάλυβες ψυχρής έλασης είναι πιο ευαίσθητοι στην διάβρωση με μηχανική καταπόνηση, εξαιτίας υπολειπομένων τάσεων.
Με ανόπτηση, οι υπολειπόμενες τάσεις εξαφανίζονται και ο χάλυβας ανακτά την διαβρωτική του αντοχή.
Η διάβρωση με μηχανική καταπόνηση συνδέεται με την δημιουργία (ή απλώς την παρουσία) δομικών ατελειών στο κρυσταλλικό πλέγμα του κράματος.
Οι ατέλειες αυτές απλώνονται μέχρι την επιφάνεια του κράματος με αποτέλεσμα την τοπική φθορά του προστατευτικού οξειδίου Cr2O3, την δημιουργία ρωγμών και την τελική αστοχία του κράματος.
Οι ωστενιτικοί ανοξείδωτοι χάλυβες AISI-SAE 304 και AISI-SAE 316 αστοχούν εύκολα λόγω διάβρωσης με μηχανική καταπόνηση σε διαλύματα που περιέχουν ελάχιστα mg/L Cl–, όταν η θερμοκρασία ξεπεράσει τους 50 °C.
Οι ωστενιτικοί ανοξείδωτοι χάλυβες με υψηλή περιεκτικότητα σε μολυβδαίνιο (> 6%) ή νικέλιο, οι φερριτικοί και οι διφασικοί ανοξείδωτοι χάλυβες παρουσιάζουν καλύτερη αντοχή στην διάβρωση με μηχανική καταπόνηση.
Ηλεκτροχημική διάβρωση
Η ηλεκτροχημική ή γαλβανική διάβρωση (αγγλ., galvanic corrosion) συμβαίνει όταν δύο διαφορετικά μέταλλα βρίσκονται σε επαφή το ένα με το άλλο.
Τότε δημιουργείται ένα τοπικό γαλβανικό στοιχείο με αποτέλεσμα την διάβρωση του πιο ηλεκτροθετικού μετάλλου.
Εάν, για παράδειγμα, επάνω στην επιφάνεια του ανοξείδωτου χάλυβα βρεθούν λίγα ψήγματα κοινού χάλυβα, αυτά θα αρχίσουν να οξειδώνονται λόγω ηλεκτροχημικής διάβρωσης, και στην συνέχεια η διάβρωση μπορεί να επεκταθεί και στην επιφάνεια του ανοξείδωτου χάλυβα.
Στην περίπτωση αυτή γίνεται λόγος και για διάβρωση εξ επαφής (αγγλ., contact corrosion).
Η διάβρωση εξ επαφής εμποδίζεται με κατάλληλο καθαρισμό του κράματος με νιτρικό ή υδροφθορικό οξύ.
Άλλες μορφές διάβρωσης
Ο ανοξείδωτος χάλυβας μπορεί να υποστεί και άλλες μορφές διάβρωσης, όπως η ερύθρωση (αγγλ., rouging) όταν βρίσκεται σε επαφή με υπερκαθαρό νερό, μηχανοχημική διάβρωση (εργοδιάβρωση λόγω σουλφιδίων) όταν βρίσκεται σε επαφή με υδρόθειο (H2S) σε θερμοκρασία 60–100 °C, κ.λπ.
WIKIPEDIA
The Free Encyclopedia